Biologia
  Wiw.pl   Na bieżąco:  Informacje   Co nowego   Matematyka i przyroda:  Astronomia   Biologia   Fizyka   Matematyka   Modelowanie rzeczywistości   Humanistyka:  Filozofia   Historia   Kultura antyczna   Literatura   Sztuka   Czytaj:  Biblioteka   Delta   Wielcy i więksi   Przydatne:  Słowniki   Co i gdzie studiować   Wszechświat w obrazkach    
 Jesteś tutaj:  Wirtualny Wszechświat > Biologia > Ewolucjonizm > Teoria ewolucji Darwina 
  Indeks
Ewolucjonizm
Teoria ewolucji Darwina
Walka o byt
Dobór naturalny . . .
  Źródło
Karol Darwin
Fragmenty pochodzą z książki Karola Darwina
O powstawaniu gatunków drogą doboru naturalnego


  Dobór naturalny, czyli przeżycie najstosowniejszego, cd.
 
ZBIEŻNOŚĆ (KONWERGENCJA) CECH
 
       Pan H. C. Watson mniema, że przeceniłem znaczenie rozbieżności cech (na którą zresztą prawdopodobnie się zgadza) i że pewną rolę odgrywa również to, co można by nazwać „zbieżnością (konwergencją) cech”. Jeżeli dwa gatunki należące do dwóch odrębnych, chociaż spokrewnionych rodzajów wytworzyły znaczną ilość nowych i rozbieżnych form, to można wyobrazić sobie, że mogą się one tak dalece zbliżyć do siebie, iż zostaną zaliczone do jednego rodzaju i w ten sposób potomkowie dwóch różnych rodzajów zespolą się w jeden rodzaj. W większości wypadków byłoby zbyt śmiałe przypuszczać, że zbieżność może spowodować bliskie podobieństwo ogólnej budowy przekształconych potomków form zupełnie różnych od siebie. Kształt kryształu zależy tylko od sił cząsteczkowych, nic więc dziwnego, że niepodobne ciała nieorganiczne przyjmują niekiedy jednakową krystaliczną postać. Co do istot organicznych musimy jednak pamiętać, że postać każdej z nich zależy od mnóstwa zawiłych stosunków, a mianowicie od zmian, które pojawiły się pod wpływem przyczyn zbyt zawikłanych, aby tu można je było wyliczyć, od natury tych zmian, które zostały zachowane lub wyselekcjonowane, co zależy od otaczających warunków fizycznych, a jeszcze bardziej od otaczających organizmów, z którymi każda istota konkuruje, wreszcie od dziedziczenia (która jest sama przez się czynnikiem podlegającym zmianom) po niezliczonej ilości przodków, których postać również zależała od niezmiernie zawiłych stosunków. Trudno uwierzyć, aby potomstwo dwóch organizmów, które początkowo różniło się od siebie w wyraźny sposób, mogło później ulec tak daleko idącej konwergencji, że w całej swojej organizacji stanie się prawie identyczne. Gdyby coś podobnego stać się mogło, musielibyśmy napotykać te same formy, niezależnie od ich genetycznego związku, w zupełnie różnych geologicznych formacjach, gdy tymczasem fakty przeczą temu przypuszczeniu.
       Pan Watson zrobił też zarzut, że ciągła działalność doboru naturalnego wraz z dywergencją cech prowadzi do tego, że wytworzy nieskończoną ilość form gatunkowych[2]. Jeśli chodzi jedynie o nieorganiczne warunki, zdaje się prawdopodobne, że dostateczna liczba gatunków mogłaby się wkrótce przystosować do wszystkich znaczniejszych różnic ciepła, wilgotności itp.; wszakże stanowczo przyznaje, że stosunki wzajemne istot organicznych są daleko ważniejsze, a w miarę tego, jak liczba gatunków każdego kraju się zwiększa, organiczne warunki życia stawać się muszą coraz bardziej złożone. Dlatego też na pierwszy rzut oka wydaje się, że nie ma granicy dla ilości korzystnych zróżnicowań w budowie, a więc dla ilości gatunków, które wytworzyć się mogą. Nie wiemy, czy nawet najbogatsze okolice są całkowicie wypełnione formami gatunkowymi; na Przylądku Dobrej Nadziei i w Australii, które odznaczają się zadziwiającą liczbą gatunków, zaaklimatyzowało się wiele roślin europejskich. Geologia wszakże wykazuje, że od początku trzeciorzędu liczba gatunków mięczaków, a od połowy tegoż okresu liczba ssaków powiększyła się niewiele lub wcale. Cóż więc zatrzymuje wzrastanie ilości gatunków w nieskończoność? Ilość życia (nie mam tu na myśli liczby gatunków) utrzymującego się w danej okolicy musi mieć granicę, zależną oczywiście przede wszystkim od warunków fizycznych. Stąd też, jeżeli okolica jakaś zamieszkana jest przez bardzo wiele gatunków, każdy lub prawie każdy gatunek reprezentowany będzie przez niewielką tylko liczbę osobników, a takie gatunki z łatwością ulegać mogą zagładzie wskutek przypadkowych wahań w przebiegu pór roku lub w liczbie nieprzyjaciół. W podobnych wypadkach proces zagłady będzie szybki, podczas gdy proces tworzenia nowych gatunków zawsze musi być powolny. Wystawmy sobie krańcowy wypadek tego rodzaju, np. że w Anglii tyle jest gatunków, ile osobników, wtedy pierwsza ostra zima lub bardzo suche lato zniszczy tysiące tysięcy gatunków. Rzadki gatunki — a tam, gdzie liczba gatunków wzrasta nieskończenie, każdy gatunek będzie rzadki — wytworzą na podstawie znanych nam zasad w danym okresie czasu mało korzystnych zmian, a wskutek tego opóźni się proces powstawania nowych gatunków. Prócz tego, skoro jakikolwiek gatunek staje się bardzo rzadki, chów krewniaczy przyczyni się do jego zagłady. Niektórzy autorzy sądzili, że okoliczność ta wyjaśnia powolne wymieranie żubra na Litwie, jelenia w Szkocji, niedźwiedzi w Norwegii itd. Wreszcie — a skłonny jestem myśleć, że jest to czynnik najważniejszy — gatunek dominujący, który już pokonał wielu konkurentów we własnej ojczyźnie, będzie usiłował rozpościerać się dalej i wyprzeć inne gatunki. Alfons de Candolle dowiódł, że gatunki szeroko rozprzestrzenione dążą na ogół do jeszcze szerszego rozprzestrzenienia; będą więc one usiłowały wyprzeć i wytępić rozmaite gatunki na rozmaitych obszarach i w ten sposób hamować będą nieograniczony liczebny wzrost form gatunkowych na świecie. Dr Hooker wykazał niedawno, że na południowo–wschodnim krańcu Australii, gdzie znajduje się wielu przybyszów ze wszystkich części świata, zmniejszyła się znacznie liczebność miejscowych australijskich gatunków. Nie chcę tutaj bynajmniej stanowczo orzekać, jaką wagę można przypisać każdemu z powyższych powodów; zawsze jednak współdziałanie ich musi na każdym obszarze ograniczać dążność do nieskończonego powiększania się liczby form gatunkowych.
góra strony
poprzedni esej
  
[1]
  
[2]
  
[3]
  
[4]
  
[5]
  
[6]
  
[7]
  
[8]
  
[9]
  
[10]
  
[11]
  
[12]
  
[13]
  
[14]
  
[15]
  
                   
Wiw.pl  |  Na bieżąco  |  Informacje  |  Co nowego  |  Matematyka i przyroda  |  Astronomia  |  Biologia  |  Fizyka  |  Matematyka  |  Modelowanie rzeczywistości  |  Humanistyka  |  Filozofia  |  Historia  |  Kultura antyczna  |  Literatura  |  Sztuka  |  Czytaj  |  Biblioteka  |  Delta  |  Wielcy i więksi  |  Przydatne  |  Słowniki  |  Co i gdzie studiować  |  Wszechświat w obrazkach