Wołania kwarków |
|
Wołania kwarków
|
|
kład hadronów uporządkowanych według rozmaitych liczb kwantowych także domagał się przyjęcia hipotezy, że mamy do czynienia z jakąś substrukturą. Jednak nie tak łatwo usłyszeć wołania subjądrowych cząstek. Udało się to dwóm fizykom o znakomicie wyostrzonym słuchu i napisali o tym. Gell-Mann zaproponował istnienie czegoś, co nazwał strukturami matematycznymi. W roku 1964 pisał, że układ hadronów da się wyjaśnić za pomocą trzech tworów logicznych. Nazwał je kwarkami. Powszechnie przyjmuje się, że znalazł to słowo w diabolicznej powieści Jamesa Joyce'a Finnegans Wake (w zdaniu: Three quarks for Muster Mark!). George Zweig miał identyczny pomysł, gdy pracował w CERN. On nazwał swoje trzy twory asami.
|
Prawdopodobnie nigdy nie dowiemy się, jak doszło do narodzin tego wspaniałego pomysłu. Znam jedną z wersji tej historii, bo byłem na miejscu: na Uniwersytecie Columbia w roku 1963. Gell-Mann mówił na seminarium o swojej Ośmiokrotnej Ścieżce symetrii hadronów, gdy teoretyk z tej uczelni, Robert Serber, zauważył, że możliwym wytłumaczeniem ósemkowego porządku byłoby istnienie trzech podjednostek. Gell-Mann zgodził się z tym, ale zaznaczył, że jeśli te podjednostki miałyby być cząstkami, to musiałyby mieć niesłychaną własność: ułamkowy ładunek elektryczny, czyli 1/3, 2/3, –1/3 i tak dalej.
|
W świecie cząstek wszystkie ładunki elektryczne mierzone są w jednostkach ładunku elektronu. Ładunek każdego elektronu równa się dokładnie 1,602193 × 10–19 kulomba. Mniejsza o to, co to takiego ten kulomb. Zapamiętaj tylko, drogi Czytelniku, że używamy tej skomplikowanej liczby jako jednostki, która wyraża ładunek elektronu. Tak się szczęśliwie składa, że w tych jednostkach ładunek protonu także wynosi jeden (1,0000), podobnie ładunek naładowanego pionu, mionu (tu precyzja pomiaru jest jeszcze większa) i tak dalej. A zatem w przyrodzie ładunki występują w postaci liczb całkowitych: 0, 1, 2... Rozumie się przez to, że ładunki te są wielokrotnościami wyżej podanej liczby kulombów. Ładunki występują także w dwóch odmianach: dodatniej i ujemnej. Nie wiemy dlaczego, ale tak właśnie jest. Można by wyobrazić sobie świat, w którym elektron wskutek szczególnie gwałtownego zderzenia lub podczas gry w pokera straciłby 12 procent swego ładunku, ale jest to niemożliwe w naszym świecie. Elektron, proton, p+ i inne cząstki zawsze mają ładunek równy 1,0000.
|
Kiedy więc Serber wspomniał o cząstkach, których ładunek elektryczny wyrażałby się ułamkiem, spotkało się to z dość oczywistą reakcją: nie ma mowy. Takich rzeczy dotąd nie widziano i ten skądinąd ciekawy fakt, że wszystkie obserwowane ładunki są całkowitą wielokrotnością unikalnego i niezmiennego wzorca, został z biegiem czasu wbudowany w fundamenty intuicyjnego sposobu myślenia w fizyce. To skwantowanie ładunku elektrycznego było jedną z przyczyn poszukiwania jakiejś głębszej symetrii, która pozwoliłaby je wyjaśnić. Jednak Gell-Mann przemyślał sprawę dokładnie i sformułował hipotezę mówiącą o kwarkach. Jednocześnie rozwodnił całą sprawę (tak w każdym razie zdawało się niektórym z nas), sugerując, że kwarki nie są rzeczywistymi cząstkami, tylko stanowią użyteczny twór matematyczny.
|
Trzy kwarki, które urodziły się w 1964 roku, otrzymały nazwy górny – u (od ang. up), dolny – d (down) i dziwny – s (strange). Istnieją też, oczywiście, trzy antykwarki u, d i s. Trzeba było bardzo ostrożnie dobrać własności kwarków, aby dało się z nich zbudować wszystkie znane hadrony. Kwark u został obdarzony ładunkiem +2/3, kwarki d i s otrzymały po –1/3. Antykwarki mają takie same ładunki, lecz o przeciwnym znaku. Inne liczby kwantowe również są tak dobierane, by ich suma wypadła poprawnie. Proton składa się z trzech kwarków – uud – o ładunkach +2/3, +2/3 i –1/3, co w sumie daje +1, czyli zgadza się z tym, co wiemy o protonie. Neutron jest kombinacją kwarków udd o ładunkach +2/3, –1/3 i –1/3. Ich suma wynosi zero, co również nam odpowiada, bo neutron jest neutralny.
|
Zgodnie z modelem kwarkowym wszystkie hadrony składają się z kwarków, niektóre z dwóch, inne z trzech. Istnieją dwie klasy hadronów: bariony i mezony. Bariony – rodzina, do której należą proton oraz neutron – składają się z trzech kwarków. Mezony, obejmujące piony i kaony, składają się z dwóch kwarków, ale musi to być zawsze para kwark-antykwark. Na przykład układ ud to dodatni pion (p+). Jego ładunek wynosi +2/3 +1/3, czyli jeden. (Zauważmy, że d, antydolny kwark, ma ładunek +1/3).
|
Gdy powstawała ta hipoteza, liczby kwantowe kwarków i ich własności, jak spin, ładunek i izospin, dobierano w ten sposób, by można było za ich pomocą objaśnić własności zaledwie kilku barionów (proton, neutron, L itd.) oraz mezonów. Potem okazało się, że te liczby i ich odpowiednie kombinacje pasują do wszystkich znanych hadronów. Całość działa. I wszystkie cechy obiektu złożonego – na przykład protonu – zależą od własności kwarków, z których się składa, modyfikowanych przez ich wzajemne oddziaływania. Taki w każdym razie panuje pogląd, czy może raczej tak przedstawia się zadanie, stojące przed pokoleniami fizyków i pokoleniami komputerów, oczywiście pod warunkiem, że dostarczy się im danych.
|
Kombinacje kwarków związane są z interesującym zagadnieniem. Cechą typową dla ludzi jest modyfikowanie zachowania w zależności od towarzystwa, w jakim się obracają. Jak się jednak przekonamy, kwark nigdy nie jest sam, więc ich prawdziwe, pierwotne własności można określić jedynie drogą dedukcji na podstawie rozmaitych sytuacji, w jakich możemy je obserwować. W każdym razie, oto kilka typowych kombinacji kwarków oraz hadrony, jakie z nich powstają:
|
|
BARIONY | MEZONY |
uud | proton | ud | dodatni pion |
udd | neutron | du | ujemny pion |
uds | lambda | uu + dd | neutralny pion |
uus | sigma plus | us | dodatni kaon |
dds | sigma minus | su | ujemny kaon |
uds | sigma zero | ds | neutralny kaon |
dss | ksi minus | ds | neutralny antykaon |
uss | ksi zero | | |
|
|
Fizycy radowali się spektakularnym sukcesem, który polegał na zredukowaniu setek, zdawałoby się, elementarnych obiektów do zaledwie trzech rodzajów kwarków. (Nazwa as zanikła. Jeśli idzie o zdolność do nadawania chwytliwych nazw, nikt nie jest w stanie wytrzymać konkurencji z Gell-Mannem). Dobrą teorię poznaje się po tym, czy pozwala formułować trafne przewidywania, a kwarkowa hipoteza odnosiła błyskotliwe sukcesy. Na przykład w rejestrze odkrytych cząstek nie było takiej, która składa się z trzech dziwnych kwarków, ale to nie powstrzymało nas przed nadaniem jej nazwy omega minus (W–). Ponieważ cząstki zawierające kwark s mają określone własności, można więc było łatwo przewidzieć cechy hadronu składającego się z trzech kwarków dziwnych (sss). W– jest bardzo dziwną i charakterystyczną cząstką. W roku 1964 odkryto ją w komorze pęcherzykowej w Brookhaven i zachowywała się dokładnie tak, jak przewidział Gell-Mann.
|
Nie rozwiązało to, rzecz jasna, wszystkich spornych kwestii. W żadnym wypadku! Pozostało wiele pytań. Na początek: co sprawia, że kwarki trzymają się razem? Ta potężna siła w ciągu trzydziestu lat stała się obiektem tysięcy prac teoretycznych i eksperymentalnych. Teoria zwana chromodynamiką kwantową zaproponowała nowy gatunek cząstek przenoszących oddziaływanie – gluonów – których zadaniem byłoby cementowanie (!!) kwarków w jedną całość. Ale wszystko w swoim czasie.
|
|