Znalezienie zet zero |
|
Znalezienie zet zero
|
|
ość teorii. Trzeba przyznać, że to skomplikowane sprawy. Jeszcze do nich wrócimy. Żelazna zasada pedagogiczna, której trafność miałem okazję wypróbowywać w ciągu czterdziestu lat pracy ze studentami – od pierwszego roku po asystentów – mówi, że nawet jeśli 97 procent materiału wykładu jest niezrozumiałe, to powtórzenie go spowoduje, iż wyda się dziwnie znajomy.
|
Jakie konsekwencje dla realnego świata płynęły ze wszystkich tych teorii? Wielkie konsekwencje będą musiały poczekać, aż dojdziemy do rozdziału ósmego. W roku 1970 bezpośrednia konsekwencja dla doświadczalników sprowadzała się do tego, że aby cała teoria miała sens, musi istnieć Z0. A jeśli Z0 jest cząstką, to powinniśmy ją znaleźć. Z0 jest neutralne jak jego przyrodni brat foton, ale w odróżnieniu od pozbawionego masy fotonu Z0 miało być bardzo ciężkie; tak jak jego rodzeństwo – bliźnięta W. Nasz cel jawił się bardzo wyraźnie: szukać czegoś, co przypomina ciężki foton.
|
W wielu eksperymentach, w tym także w kilku przeprowadzonych przeze mnie, poszukiwaliśmy śladów cząstek W. Nie zdołaliśmy ich znaleźć i stwierdziliśmy, że ten brak jest zrozumiały jedynie pod warunkiem, że masa W przekracza 2 GeV. Gdyby była mniejsza, cząstki te ujawniłyby się w drugiej serii naszych eksperymentów z neutrinami w Brookhaven. Szukaliśmy w zderzeniach protonów. Wciąż brak W. Teraz już ich masa musiała przekraczać 5 GeV. Teoretycy też mieli swoje opinie na temat własności W i wciąż zwiększali ich masę, aż pod koniec lat siedemdziesiątych powiedzieli, że wynosi ona około 70 GeV. O wiele za dużo, jak na możliwości maszyn w tamtej epoce.
|
Ale wróćmy do Z0. Neutrino uderza w jądro. Jeśli wyśle przy tym cząstkę W+ (antyneutrino wysyła W–), zmieni się w mion, ale jeśli może wysłać Z0, to nadal pozostanie sobą – neutrinem. Jak już wspomniałem, ponieważ wtedy nie zmienia się ładunek na linii leptonów, nazywamy tę przemianę prądem neutralnym.
|
Trudno przeprowadzić prawdziwy eksperyment, który pozwoliłby wykryć prąd neutralny: na początku mamy niewidzialne neutrino, równie niewidzialne neutrino na końcu, a do tego garść hadronów pochodzących z uderzonego nukleonu. Zaobserwowanie w detektorze samych hadronów na nikim nie zrobi żadnego wrażenia, bo to samo mógłby spowodować jakiś neutron tła. W roku 1971 w CERN zaczęła działać przy wiązce neutrinowej gigantyczna komora pęcherzykowa, zwana Gargamelle. Akcelerator PS o mocy 30 GeV wytwarzał neutrina o energii 1 GeV. Już w roku 1972 grupa z CERN znalazła się na tropie bezmionowych zdarzeń. Jednocześnie nowe urządzenie w Fermilabie posyłało neutrina o energii 50 GeV w kierunku ogromnego, elektronicznego detektora, przy którym pracowali David Cline (Uniwersytet Stanu Wisconsin), Alfred Mann (Uniwersytet Stanu Pensylwania) i Carlo Rubbia (Harvard, CERN, północne Włochy, Alitalia...).
|
Nie sposób w kilku słowach streścić historię tego odkrycia. Jest ona pełna burzy i naporu, ludzkich ambicji i zagadnień z zakresu socjopolityki nauki. Pominiemy to wszystko i po prostu powiemy, że w roku 1973 grupa Gargamelle oznajmiła, cokolwiek bez przekonania, że zaobserwowała prąd neutralny. W Fermilabie, zespół Cline-Mann-Rubbia też miał raczej takie sobie dane. Procesy tła istotnie zaciemniały obraz, a sygnał, jaki udało im się uzyskać, nie był szczególnie imponujący. Oznajmili, że znaleźli prąd neutralny, potem się wycofali. Potem znów oznajmili. Jakiś żartowniś nazwał ich odkrycie zmiennym prądem neutralnym.
|
Podczas międzynarodowej konferencji rochesterskiej, która w 1974 roku odbywała się w Londynie, wszystko już było jasne: w CERN odkryto prąd neutralny, a grupa z Fermilabu dysponowała przekonującymi danymi na potwierdzenie tego odkrycia. Dane wskazywały na to, że coś jakby Z0 musiało istnieć. Ale jeśli chcemy trzymać się ogólnie przyjętych reguł postępowania, to musimy przyznać, że dopiero dziewięć lat później bezpośrednio udowodniono istnienie tej cząstki, choć już w roku 1974 potwierdzono istnienie prądów neutralnych. Zasługę odkrycia Z0 w 1983 roku przypisuje się CERN. Masa? Zet zero jest naprawdę ciężkie: 91 GeV.
|
Uwaga na marginesie: do połowy roku 1992 urządzenie LEP pracujące w CERN zarejestrowało już ponad dwa miliony cząstek zet zero, zbieranych przez cztery ogromne detektory. Badania procesu tworzenia się tych cząstek, a następnie ich rozpadu dostarczają ogromnych ilości danych, którymi zajmuje się niemal 1400 fizyków. Przypomnij sobie, drogi Czytelniku, że kiedy Ernest Rutherford odkrył cząstki a, najpierw wyjaśnił ich naturę, a potem zaczął ich używać jako narzędzi badawczych i dzięki temu odkrył jądro. My zrobiliśmy to samo z neutrinami. Wiązki neutrin stały się narzędziem pożytecznym w poszukiwaniach cząstek przenoszących oddziaływania, w badaniach kwarków i wielu innych rzeczach. Wczorajsza fantazja dziś jest odkryciem, a jutro – przyrządem.
|
|