Piórko i grosik |
|
Piórko i grosik
|
|
iełatwo jest wyłuskać proste prawo fizyki ze zbioru wyników pomiarów. Przyroda skrywa swą prostotę w gąszczu komplikujących sprawę okoliczności, a zadanie eksperymentatora polega na ich usunięciu. Prawo swobodnego spadania jest tego wspaniałym przykładem. Podczas wykładu dla studentów pierwszego roku umieszczamy piórko i grosik u szczytu szklanej rurki i jednocześnie je puszczamy. Grosz stuka o dno w czasie krótszym niż sekunda. Piórko delikatnie spływa w dół i osiąga dno po 5–6 sekundach. Takie obserwacje doprowadziły Arystotelesa do sformułowania prawa, mówiącego, że ciała ciężkie spadają szybciej niż lekkie. Następnie wypompowujemy z rurki powietrze i powtarzamy eksperyment. Piórko i grosik spadają jednocześnie. Opór powietrza zniekształca prawo swobodnego spadania. By posuwać się naprzód i dotrzeć do prostego prawa, musimy usuwać rzeczy, które komplikują obraz. Później, jeśli mamy ku temu ważne powody, możemy nauczyć się dodawać z powrotem ten efekt, by otrzymać bardziej złożone i mające szersze zastosowanie prawo fizyczne.
|
Arystotelicy uważali, że naturalnym stanem ciał fizycznych jest spoczynek. Popchnij kulę leżącą na płaszczyźnie: w końcu się zatrzyma, czyż nie? Galileusz wiedział wiele o wpływie niedoskonałych warunków i ta wiedza doprowadziła go do jednego z wielkich odkryć. Podobnie jak Michał Anioł, który widział wspaniałe postacie ukryte w marmurowych bryłach, Galileusz odczytywał fizykę zapisaną w równiach pochyłych. Zdawał sobie sprawę, że z powodu tarcia, ciśnienia atmosferycznego i innych nie sprzyjających okoliczności jego pochylnie nie były idealnymi narzędziami do badania sił oddziałujących na rozmaite ciała. Co by było – zastanawiał się – gdybym miał idealną pochylnię? Demokryt ostrzył w myśli swój nóż; podobnie trzeba w myśli polerować płaszczyznę tak długo, aż osiągnie najwyższą gładkość i zupełnie pozbędziemy się tarcia. Następnie należy umieścić płaszczyznę w komorze próżniowej, by wyeliminować opór powietrza, powiększyć ją do nieskończoności i upewnić się, że leży absolutnie poziomo. Teraz trzeba pchnąć doskonale wypolerowaną kulę leżącą na tej gładkiej, gładziuteńkiej powierzchni. Jak daleko się potoczy? Jak długo będzie się poruszać? (Dopóki to wszystko dzieje się w myśli, eksperyment jest możliwy do przeprowadzenia i tani).
|
Odpowiedź brzmi: bez końca. Galileusz rozumował następująco: gdy płaszczyzna – nawet zwykła, ziemska, niedoskonała płaszczyzna – jest przechylona, kulka pchnięta pod górę toczy się coraz wolniej. Natomiast kulka pchnięta w dół toczy się coraz szybciej. Dlatego, na podstawie intuicyjnego poczucia ciągłości zachowania, stwierdził, że na płaskiej płaszczyźnie kulka nie będzie ani zwalniać, ani przyspieszać, tylko poruszać się bez końca. Galileusz dokonał intuicyjnego przeskoku do tego, co zwiemy teraz pierwszym prawem ruchu Newtona: poruszające się ciało pozostaje w ruchu. Siły są potrzebne nie po to, aby spowodować ruch, ale aby wywołać jego zmianę. W przeciwieństwie do arystotelesowskiego ujęcia, naturalnym stanem ciała jest ruch ze stałą prędkością. Stan spoczynku to tylko szczególny przypadek ruchu z zerową prędkością, ale wedle tego nowego ujęcia nie jest bardziej naturalny niż ruch z jakąkolwiek inną stałą prędkością. Dla każdego, kto kiedykolwiek prowadził samochód czy rydwan, idea ta przeczy doświadczeniu. Jeśli zdejmie się nogę z pedału gazu albo przestanie okładać konie, pojazd wkrótce się zatrzyma. Galileusz zauważył, że aby znaleźć prawdę, trzeba w myśli przypisać przyrządowi idealne własności (albo prowadzić samochód na oblodzonej drodze). Jego geniusz przejawiał się w tym, że umiał usunąć naturalne przeszkody, takie jak tarcie i opór powietrza, i określić zestaw fundamentalnych relacji zachodzących w świecie.
|
Jak się wkrótce przekonamy, Boska Cząstka stanowi komplikację narzuconą prostemu i pięknemu Wszechświatowi, być może po to, by ukryć tę olśniewającą symetrię przed oczami niegodnej, jak dotąd, ludzkości.
|
|