Indeks
|
|
Źródło
|
|
|
Leon Lederman, Dick Teresi BOSKA CZĄSTKA Jeśli Wszechświat jest odpowiedzią, jak brzmi pytanie? Przełożyła Elżbieta Kołodziej-Józefowicz
|
|
|
|
|
|
|
|
Szok w Kopenhadze |
|
Szok w Kopenhadze
|
|
by dalej śledzić historię elektryczności – tego czegoś, co za pewną cenę wyłania się z dwóch czy trzech otworów gniazdek tkwiących w ścianach – musimy udać się do Kopenhagi. W 1820 roku Hans Christian Oersted dokonał doniosłego odkrycia; niektórzy historycy twierdzą, że było to najdonioślejsze z doniosłych odkryć w tej dziedzinie. Oersted otrzymał prąd w tradycyjny sposób: połączył przewodem jeden biegun baterii Volty z drugim. Elektryczność wciąż kryła tajemnice, ale wiadomo było, że prąd elektryczny brał się z czegoś, zwanego ładunkiem elektrycznym, przemieszczającego się wzdłuż przewodu. Nie było w tym nic nowego, dopóki Oersted nie umieścił igły kompasu (magnesu) w pobliżu obwodu. Gdy prąd płynął w obwodzie, igła odchylała się od normalnego położenia wyznaczonego przez biegun północny i przyjmowała dziwaczną pozycję pod kątem prostym do obwodu. Oersted najpierw się tym zmartwił, aż wreszcie zaświtało mu, że przecież kompas służy do tego, by wykrywać pole magnetyczne! A zatem zachowanie igły świadczy o tym, że prąd płynący w obwodzie musi wytwarzać pole magnetyczne, czyż nie? Oersted odkrył związek między elektrycznością i magnetyzmem: prąd elektryczny wytwarza pole magnetyczne. Magnesy, oczywiście, także wytwarzają pole magnetyczne i ich zdolność do przyciągania kawałków żelaza (albo przytwierdzania zdjęć do drzwi lodówek) była dobrze znana. Wiadomość o odkryciu obiegła Europę i wywołała wielkie poruszenie.
|
Wykorzystując tę informację paryżanin André Marie Ampère znalazł matematyczny wzór opisujący zależności między prądem a polem magnetycznym. Wielkość i kierunek pola zależą od prądu i od kształtu (prostego, kołowego czy jakiegokolwiek innego) przewodu, w którym płynie prąd. Łącząc rozumowanie matematyczne z wynikami wielu pospiesznie przeprowadzonych eksperymentów, Ampère rozpętał burzę kontrowersji, z której w odpowiednim czasie wyłonił się przepis pozwalający na obliczanie pola magnetycznego wytwarzanego przez prąd płynący w dowolnie ukształtowanym obwodzie – prostym, zakrzywionym, kołowym czy gęsto nawiniętym na cylindryczną formę. Skoro prąd przepuszczony przez dwa proste przewody wytwarza dwa pola magnetyczne, które mogą na siebie oddziaływać, to wynika z tego, że przewody wywierają na siebie nawzajem pewną siłę. To odkrycie umożliwiło Faradayowi dokonanie kolejnego ważnego wynalazku – silnika elektrycznego. Fakt, że kołowa pętla, w której płynie prąd, wytwarza pole magnetyczne, miał też inne głębokie implikacje. Czy możliwe, że to, co starożytni nazywali magnetytami, naturalnymi magnesami, mogło być zbudowane z kolistych obwodów elektrycznych w skali atomowej? Był to kolejny fakt wskazujący na elektryczną naturę atomów.
|
Oersteda, podobnie jak wielu innych uczonych, pociągała unifikacja, redukcja i tendencja do upraszczania. Wierzył, że grawitacja, elektryczność i magnetyzm to różne przejawy tej samej siły, i dlatego właśnie jego odkrycie bezpośredniego związku łączącego dwa rodzaje oddziaływań było tak bardzo podniecające (szokujące?). Ampère także dążył do prostoty i nawet próbował wyeliminować magnetyzm, traktując go jako przejaw elektryczności będącej w ruchu (elektrodynamika).
|
|
|
|