Fizyka
  Wiw.pl   Na bieżąco:  Informacje   Co nowego   Matematyka i przyroda:  Astronomia   Biologia   Fizyka   Matematyka   Modelowanie rzeczywistości   Humanistyka:  Filozofia   Historia   Kultura antyczna   Literatura   Sztuka   Czytaj:  Biblioteka   Delta   Wielcy i więksi   Przydatne:  Słowniki   Co i gdzie studiować   Wszechświat w obrazkach    
 Jesteś tutaj:  Wirtualny Wszechświat > Fizyka > Wielkie wykłady - Boska cząstka 
  Indeks
Wielkie wykłady
Dramatis personae
Niewidoczna piłka
nożna

Pierwszy fizyk cząstek
Interludium A:
Opowieść o dwóch
miastach

Poszukiwania atomu:
mechanicy

Dalsze poszukiwania
atomu: chemicy
i elektrycy

Nagi atom
Interludium B:
Tańczący mistrzowie
wiedzy tajemnej

Akceleratory: one
rozkwaszają atomy,
nieprawdaż?

Czy Bogini stwarza to
wszystko . . .

Dlaczego aż tyle
energii?

Szczelina
Umasywniacz
Katedra Moneta, czyli
trzynaście sposobów
widzenia protonu

Nowa materia:
kilka przepisów

Cząstki z próżni
Wyścig
Wpływowa osobistość
z Kalifornii

Wielka nauka i genius
loci Kalifornii

Synchrotron: tyle
okrążeń, ile chcesz

Ike i piony
Damy Beppa
Pierwsza wiązka
zewnętrzna:
przyjmujemy zakłady

Dygresja w stronę
nauk społecznych:
pochodzenie wielkiej
nauki

Z powrotem do
maszyn: trzy przełomy
technologiczne

Czy większe jest
lepsze?

Czwarty przełom:
nadprzewodnictwo

Kowboj dyrektorem
laboratorium

Dzień z życia protonu
Decyzje, decyzje:
protony czy elektrony

Zderzenie czołowe
czy tarcza?

Wytwarzając
antymaterię

Zaglądanie do czarnej
skrzynki: detektory

Kłopoty
z pęcherzykami

Czego się
dowiedzieliśmy:
akceleratory i postęp
w fizyce

Trzy finały:
wehikuł czasu, katedry
i akcelerator na orbicie

Interludium C:
Jak w ciągu weekendu
złamaliśmy parzystość
i odkryliśmy Boga

A–tom!
I wreszcie boska
cząstka

Mikroprzestrzeń,
makroprzestrzeń
i czas przed
początkiem czasu

  Źródło
Leon Lederman,
Dick Teresi

BOSKA CZĄSTKA
Jeśli Wszechświat jest odpowiedzią, jak brzmi pytanie?

Przełożyła Elżbieta
Kołodziej-Józefowicz


  Umasywniacz
 
Umasywniacz
 
C
o się dzieje podczas przyspieszania? Łatwa, choć niekompletna odpowiedź brzmi, że zwiększa się prędkość ruchu cząstek. U początków ery akceleratorów takie wyjaśnienie było najzupełniej trafne i  wystarczające. Jednak lepszą odpowiedzią jest stwierdzenie, że zwiększa się energia cząstek. Gdy akceleratory zaczęły osiągać coraz większą moc, stało się możliwe nadawanie cząstkom prędkości porównywalnych z  prędkością światła. Szczególna teoria względności Einsteina z  1905 roku mówi, że nic nie może poruszać się szybciej niż światło. Dlatego też „prędkość” jest niezbyt użytecznym pojęciem. Na przykład jedna maszyna może przyspieszać protony do prędkości, powiedzmy, równej 99 procentom prędkości światła, a  inna, o  wiele droższa, zbudowana dziesięć lat po tej pierwszej, pozwala osiągnąć 99,9 procent prędkości światła. Wielkie rzeczy! Idź wytłumacz to teraz senatorowi, który głosował za wydaniem całej tej forsy tylko po to, by uzyskać marne dodatkowe 0,9 procent!
       To nie prędkość ostrzy nóż Demokryta i  otwiera przed nami nowe obszary. To energia. Proton poruszający się z  prędkością równą 99 procentom prędkości światła ma energię równą 7  GeV (bewatron w  Berkeley zbudowany w  1955 roku), podczas gdy proton poruszający się z  prędkością równą 99,5 procent prędkości światła ma około 30 GeV (Brookhaven AGS, 1960), a  proton poruszający się z  prędkością równą 99,9 procent prędkości światła ma już 200 GeV (Fermilab, 1972). Toteż teoria względności opisująca zmiany prędkości i  energii sprawia, że nie ma sensu mówić o  szybkości. Liczy się tylko energia. Jej pokrewną cechą jest pęd, który w  wypadku wysokoenergetycznych cząstek można uznać za ukierunkowaną energię. Na marginesie wypada zaznaczyć, że w  trakcie przyspieszania cząstka robi się coraz cięższa z  powodu związku masy z  energią, wyrażonego równaniem E = mc2. Według teorii względności cząstka w  stanie spoczynku także ma pewną energię równą E = m0c2, gdzie m0 to masa spoczynkowa cząstki. W  miarę przyspieszania energia cząstki wzrasta, a  zatem zwiększa się także jej masa. Im bardziej zbliżamy się do prędkości światła, tym cięższy staje sie przyspieszany obiekt i,  w  konsekwencji, tym trudniej jest dalej zwiększać jego prędkość. Ale energia wciąż wzrasta. Tak się szczęśliwie składa, że masa spoczynkowa protonu wynosi około 1 GeV, a  zatem masa protonu przyspieszonego do energii 200 GeV jest ponad dwieście razy większa od masy protonu zamkniętego w  naczyniu z  wodorem. Nasz akcelerator w  gruncie rzeczy jest więc „umasywniaczem”.
góra strony
poprzedni fragment następny fragment
Wiw.pl  |  Na bieżąco  |  Informacje  |  Co nowego  |  Matematyka i przyroda  |  Astronomia  |  Biologia  |  Fizyka  |  Matematyka  |  Modelowanie rzeczywistości  |  Humanistyka  |  Filozofia  |  Historia  |  Kultura antyczna  |  Literatura  |  Sztuka  |  Czytaj  |  Biblioteka  |  Delta  |  Wielcy i więksi  |  Przydatne  |  Słowniki  |  Co i gdzie studiować  |  Wszechświat w obrazkach