Biologia
  Wiw.pl   Na bieżąco:  Informacje   Co nowego   Matematyka i przyroda:  Astronomia   Biologia   Fizyka   Matematyka   Modelowanie rzeczywistości   Humanistyka:  Filozofia   Historia   Kultura antyczna   Literatura   Sztuka   Czytaj:  Biblioteka   Delta   Wielcy i więksi   Przydatne:  Słowniki   Co i gdzie studiować   Wszechświat w obrazkach    
 Jesteś tutaj:  Wirtualny Wszechświat > Biologia > Ekologia > Zbiór esejów 
  Indeks
Ekologia
Ekosystemy
Ekosystemy niezwykłe
Głębie oceaniczne
Ekosystemy trawiaste
Zmiany w środowisku
Efekt cieplarniany
Wstęp
Krótka historia klimatu
Rola Słońca
Niezwykłe położenie . .
Rola organizmów . . .
CO2
Zagrożenia
Katastrofy ekologiczne
Katastrofy a ewolucja
organizmów żywych

  Źródło
Wybrane fragmenty pochodzą z książki
Ziemia i życie autorstwa Marcina Ryszkiewicza


  Rola Słońca
 
Słońce i planety
 
C
ałe ciepło docierające do powierzchni Ziemi pochodzi od Słońca. Skorupa ziemska jest grubą, skutecznie izolującą warstwą, dlatego też ani roztopione jądro, ani znacznie płyciej położona, również częściowo roztopiona warstwa astenosfery (górnego płaszcza Ziemi), nie mają swego udziału w ogólnym bilansie temperatury na powierzchni. Klimat Ziemi napędzany jest zatem ciepłem pochodzącym spoza naszej planety, jednakże mechanizm funkcjonowania klimatu zależy już od lokalnych, ziemskich uwarunkowań. W szczególności obecność na Ziemi „warstwy życia” (biosfery) wywierała na niego w dziejach rosnący wpływ. Aby zrozumieć ten złożony proces, musimy się teraz cofnąć w czasie o parę miliardów lat, a także rozejrzeć nieco w najbliższym sąsiedztwie naszej planety. W cechach Ziemi musi bowiem być coś wyjątkowego, jeśli tylko na niej powstać mogło i utrzymać się przez tak długi czas życie.
       Gdyby tylko Słońce wpływało na temperatury panujące na powierzchni Ziemi, wówczas planety położone w takiej samej od niego odległości powinny mieć jednakowe temperatury. Tak jednak nie jest. Ziemia i Księżyc krążą wokół Słońca po bardzo podobnych orbitach i otrzymują na jednostkę powierzchni identyczną ilość ciepła, a przecież temperatury panujące na ich powierzchniach są diametralnie różne.
       Po części związane jest to z tempem obrotu każdego z ciał wokół swej osi. Księżyc wiruje znacznie wolniej i każdy jego „dzień” jest równy czterem ziemskim tygodniom. Nic więc dziwnego, że jego strona wystawiona na tak długie działanie promieni słonecznych rozgrzewa się do około 100°C, podczas gdy na pogrążonej w długotrwałym mroku półkuli temperatura spada do –150°C. Czy znaczy to jednak, że szybciej obracający się Księżyc (powiedzmy: raz na 24 godziny) miałby temperaturę taką jak Ziemia? Nie. Średnia temperatura jego powierzchni nie zmieniłaby się, a to właśnie ona pokazuje, jak bardzo różne są te dwa ciała niebieskie. Otóż, średnia temperatura panująca na Księżycu wynosi –18°C, na Ziemi zaś 15°C. Różnica 33°C jest miarą naszego, ziemskiego, naturalnego efektu szklarni.
       Energia słoneczna dociera do Ziemi w postaci promieniowania. Promienie o długościach fal w zakresie 0,4–0,7 mikrometrów są widoczne dla oka i dlatego mówimy, że światło słoneczne wypromieniowywane jest w zakresie spektrum widzialnego. Dodatkowo niewielka część, około 7%, emitowana jest w postaci jeszcze krótszych fal nadfioletowych, pewna zaś drobna część w zakresie dłuższych fal podczerwonych (promieniowanie to, zwane również cieplnym, jest wprawdzie niewidoczne dla oka, ale rejestruje je nasza skóra, odczuwając ciepło) i bardzo długich fal radiowych. Niewidzialne promieniowanie, poza radiowym, w większości nie dociera jednak do powierzchni Ziemi. Fale nadfioletowe absorbowane są w stratosferze, głównie przez warstwę ozonową, natomiast promieniowanie podczerwone pochłaniane jest głównie przez parę wodną. Tak więc to światło „widzialne” ogrzewa powierzchnię Ziemi, podobnie jak ogrzewa też powierzchnię Księżyca i innych planet. Dodatkowo przechwytywane jest też przez „żywą powierzchnię Ziemi” – rośliny, które przystowowały się do wykorzystywania zawartej w nim energii do produkcji związków organicznych budujących ich ciała.
       Pod wpływem światła słonecznego powierzchnia Ziemi ogrzewa się do 20–30°C. Przy tej temperaturze emituje ona promieniowanie w zakresie fal dłuższych niż światło, w podczerwieni.
       Na Księżycu promieniowanie cieplne uchodzi w przestrzeń, oziębiając jego powierzchnię. Na Ziemi jednak jest ono absorbowane w atmosferze przez parę wodną i dwutlenek węgla, które nagrzewają się i same wypromieniowują fale podczerwone, zwracając je ku powierzchni. W ten sposób ciepło nie ucieka, Ziemia zaś ogrzewa się – i mamy efekt szklarni (analogia ze szklarnią używaną w rolnictwie jest jednak zawodna – tam nie promieniowanie, lecz ciepłe powietrze zatrzymywane jest przez szybę szklarni i nie może unieść się do góry; zwrotna radiacja fal cieplnych odgrywa minimalną rolę).
       Sprawność ziemskiej „szklarni” zależy od koncentracji gazów „szklarniowych” w atmosferze. Im więcej dwutlenku węgla, pary wodnej, metanu i innych gazów, tym bardziej nagrzewać się będzie powierzchnia Ziemi. Obecnie ilość dwutlenku węgla w powietrzu jest bardzo niewielka, wynosi około 0,03%. W przeszłości geologicznej było jednak inaczej. Pierwotna atmosfera Ziemi (podobnie jak Wenus czy Marsa) była w ogromnej większości zbudowana z tego gazu, tak więc efekt szklarni musiał być wtedy znacznie potężniejszy. Historia tych trzech planet potoczyła się jednak odmiennie. Dwutlenek węgla pozostał w atmosferze Wenus, podnosząc z czasem jej temperaturę do ponad 500°C. Jego stężenie jest tak wielkie, że dziś ciśnienie na powierzchni planety niemal stukrotnie przewyższa ciśnienie na Ziemi, a temperatura wystarcza do roztopienia wielu metali. Inaczej jest na Marsie. I ta planeta z początku musiała mieć znacznie gęstszą atmosferę zbudowaną z dwutlenku węgla, a i jej temperatura, choć znacznie niższa, wystarczała, by utrzymać wodę w stanie płynnym. Jest prawdopodobne, że rozpuszczający się w wodzie dwutlenek węgla wiązał się z jonami wapnia i wytrącał w postaci wapieni, które gromadziły się w skorupie. W ten sposób atmosfera marsjańska przerzedzała się i temperatura spadała.
       Proces ten zachodził lawinowo, aż osiągnięty został próg, poniżej którego dwutlenek węgla zaczął zamarzać, tworząc widoczne do dziś z Ziemi białe czapy lodowe na biegunach. Mars jest dziś wymarłą lodową pustynią i nic nie może tego stanu odwrócić, bo raz uwięziony dwutlenek węgla (w wapieniach lub w „suchym lodzie”) nie może już do atmosfery powrócić.1 Gdyby Mars był większą planetą, jak Ziemia lub Wenus, wówczas jego ciepło wewnętrzne wystarczyłoby do zainicjowania ruchu płyt litosfery i pogrążające się coraz głębiej osady wapienne topiłyby się, uwalniając dwutlenek węgla w procesach wulkanicznych. W ten sposób naturalny efekt szklarni mógłby się utrzymać podobnie jak na Ziemi. Mars jednak jest małą planetą...

1 Chyba żeby zrobić to sztucznie, na przykład przez posypanie marsjańskich czap lodowych pochłaniającym sztuczne promieniowanie czarnym popiołem. Mogłoby to wywołać stopniowe tajanie suchego lodu i – w efekcie – kaskadowe ocieplenie się klimatu na drodze indukowanego efektu szklarni. Są tacy, którzy tego typu możliwości traktują całkiem poważnie.
góra strony
poprzedni esej następny esej
Wiw.pl  |  Na bieżąco  |  Informacje  |  Co nowego  |  Matematyka i przyroda  |  Astronomia  |  Biologia  |  Fizyka  |  Matematyka  |  Modelowanie rzeczywistości  |  Humanistyka  |  Filozofia  |  Historia  |  Kultura antyczna  |  Literatura  |  Sztuka  |  Czytaj  |  Biblioteka  |  Delta  |  Wielcy i więksi  |  Przydatne  |  Słowniki  |  Co i gdzie studiować  |  Wszechświat w obrazkach