Fizyka
  Wiw.pl   Na bieżąco:  Informacje   Co nowego   Matematyka i przyroda:  Astronomia   Biologia   Fizyka   Matematyka   Modelowanie rzeczywistości   Humanistyka:  Filozofia   Historia   Kultura antyczna   Literatura   Sztuka   Czytaj:  Biblioteka   Delta   Wielcy i więksi   Przydatne:  Słowniki   Co i gdzie studiować   Wszechświat w obrazkach    
 Jesteś tutaj:  Wirtualny Wszechświat > Fizyka > Wielkie wykłady - Ewolucja fizyki 
  Indeks
Wielkie wykłady
Jak powstawała
Ewolucja fizyki

Triumfy poglądu
mechanistycznego

Upadek poglądu
mechanistycznego

Pole i teoria
względności

Obraz polowy
Dwa filary teorii pola
Rzeczywistość pola
Pole i eter
Rusztowanie mech.
Eter i ruch
Czas, odległość, . . .
Teoria względności
Continuum . . .
Ogólna teoria wzgl.
Wewnątrz i . . .
Geometria i . . .
Potwierdzenie teorii
Pole i materia
Streszczamy
Kwanty
  Źródło
Albert Einstein, Leopold Infeld
EWOLUCJA FIZYKI
Rozwój poglądów od najważniejszych pojęć do teorii względności i kwantów

W przekładzie Ryszarda Gajewskiego


  Wewnątrz i na zewnątrz windy
 
Wewnątrz i na zewnątrz windy
 
P
rawo bezwładności stanowiło w fizyce pierwszy wielki krok naprzód, było w gruncie rzeczy jej początkiem. Odkryto je na drodze rozważania wyidealizowanego doświadczenia z ciałem poruszającym się wiecznie, bez tarcia i bez działania jakichkolwiek sił zewnętrznych. Przykład ten, a potem wiele innych, pozwolił nam zrozumieć doniosłość wyidealizowanych doświadczeń myślowych. Obecnie będziemy znów rozważać wyidealizowane doświadczenia. Choć mogą się one wydać fantastyczne, to jednak pomogą nam zrozumieć teorię względności w takim zakresie, w jakim to jest możliwe przy użyciu naszych prostych metod.
       Poprzednio mieliśmy wyidealizowane doświadczenie z pokojem, który poruszał się ruchem jednostajnym. Teraz dla odmiany będziemy mieli spadającą windę.
       Wyobraźmy sobie wielką windę zawieszoną u szczytu drapacza chmur, znacznie wyższego niż jakikolwiek rzeczywiście istniejący. Lina utrzymująca windę nagle pęka i winda spada swobodnie ku ziemi. W czasie spadania obserwatorzy wewnątrz windy wykonują doświadczenia. Przy ich opisie nie musimy się zajmować ani oporem powietrza, ani tarciem, gdyż nasze wyidealizowane warunki pozwalają je pominąć. Jeden z obserwatorów wyjmuje z kieszeni chustkę i zegarek i upuszcza je. Co się stanie z tymi dwoma ciałami? Dla obserwatora zewnętrznego, który przygląda się wszystkiemu przez okno w windzie, zarówno chustka, jak i zegarek spadają w dół dokładnie tak samo, z jednakowym przyspieszeniem. Pamiętamy, że przyspieszenie spadającego ciała jest zupełnie niezależne od jego masy i że właśnie ta okoliczność wskazała na równość masy grawitacyjnej i masy bezwładnej. Pamiętamy także, iż równość obu mas, grawitacyjnej i bezwładnej, była z punktu widzenia mechaniki klasycznej czystym przypadkiem i nie odgrywała w jej strukturze żadnej roli. Teraz jednak równość ta, znajdująca swój wyraz w jednakowym przyspieszeniu wszystkich spadających ciał, ma zasadnicze znaczenie i stanowi podstawę całego rozumowania.
       Powróćmy do naszej spadającej chustki i zegarka; dla obserwatora zewnętrznego spadają one z jednakowym przyspieszeniem. Ale z takim samym przyspieszeniem spada również winda, jej ściany, sufit i podłoga. Toteż odległość obu ciał od podłogi nie zmieni się. Dla obserwatora wewnętrznego oba ciała pozostają dokładnie tam, gdzie się znajdowały w chwili ich upuszczenia. Obserwator wewnętrzny może nie brać pod uwagę pola grawitacyjnego, gdyż źródło tego pola leży poza jego u. w. Stwierdza on, że wewnątrz windy nie działają na oba ciała żadne siły, a więc ciała te pozostają w spoczynku, tak jakby to miało miejsce w inercjalnym u. w. W windzie dzieją się dziwne rzeczy! Jeśli obserwator popchnie jakieś ciało w dowolnym kierunku, na przykład w górę lub w dół, ciało to poruszać się będzie zawsze ruchem jednostajnym tak długo, dopóki się nie zderzy z sufitem lub z podłogą windy. Krótko mówiąc, w stosunku do obserwatora wewnątrz windy obowiązują prawa mechaniki klasycznej. Wszystkie ciała zachowują się tak, jak to przewiduje prawo bezwładności. Nasz nowy u. w., sztywno związany ze spadającą swobodnie windą, różni się od układu inercjalnego tylko pod jednym względem. W inercjalnym u. w. ciało, na które nie działają siły, będzie się poruszać ruchem jednostajnym wiecznie. Inercjalny u. w. – jak go sobie wyobraża fizyka klasyczna – nie jest ograniczony ani w przestrzeni, ani w czasie. Z obserwatorem w naszej windzie jest jednak inaczej.
       Inercjalny charakter jego u. w. jest ograniczony w przestrzeni i w czasie. Ciało, poruszające się ruchem jednostajnym, prędzej czy później zderzy się ze ścianą windy, niszcząc ruch jednostajny. Prędzej czy później cała winda zderzy się z ziemią, niszcząc obserwatorów wraz z ich doświadczeniami. Taki u. w. jest tylko „kieszonkowym wydaniem” prawdziwego inercjalnego u. w.
       Ów lokalny charakter u. w. ma zasadnicze znaczenie. Gdyby nasza urojona winda miała rozciągać się od bieguna północnego do równika, z chusteczką umieszczoną nad biegunem i z zegarkiem nad równikiem, wówczas dla obserwatora zewnętrznego przyspieszenia obu ciał nie byłyby równe; ciała te nie pozostawałyby względem siebie w spoczynku. Zawiodłoby całe nasze rozumowanie! Wymiary windy muszą być ograniczone tak, by można było założyć równość przyspieszeń wszystkich ciał względem obserwatora zewnętrznego.
       Przy tym ograniczeniu u. w. przybiera dla obserwatora wewnętrznego charakter inercjalny. Możemy nareszcie wskazać – co prawda ograniczony w czasie i przestrzeni – u. w., w którym obowiązują wszystkie prawa przyrody. Jeśli wyobrazimy sobie inny u. w., inną windę, poruszającą się ruchem jednostajnym względem spadającej swobodnie, to oba te u. w. będą lokalnie inercjalne. Wszystkie prawa są w nich obu dokładnie takie same. Przejście od jednego do drugiego jest dane przez transformację Lorentza.
       Przyjrzyjmy się, w jaki sposób obaj obserwatorzy, zewnętrzny i wewnętrzny, opisują, co się dzieje w windzie.
       Obserwator zewnętrzny spostrzega ruch windy i wszystkich ciał wewnątrz niej i stwierdza, że zachodzi on zgodnie z newtonowskim prawem ciążenia. Ruch ten nie jest dla niego jednostajny, lecz przyspieszony, ze względu na działanie pola grawitacyjnego Ziemi.
       Jednakże pokolenie fizyków urodzonych i wychowanych w windzie rozumowałoby zupełnie inaczej. Sądziliby oni, że posiadają układ inercjalny, i odnosiliby wszystkie prawa przyrody do swej windy, twierdząc słusznie, że prawa te przybierają w ich u. w. szczególnie prostą postać. Założenie, że ich winda spoczywa i że ich u. w. jest inercjalny, byłoby dla nich zupełnie naturalne.
       Rozbieżności między obserwatorami zewnętrznym i wewnętrznym nie sposób usunąć. Każdy z nich mógłby domagać się prawa odnoszenia wszystkich zdarzeń do swego u. w. W obu układach można opisywać zdarzenia w sposób równie konsekwentny.
       Przykład ten wykazuje, że można w sposób konsekwentny opisać zjawiska fizyczne w dwóch różnych u. w. nawet wtedy, gdy układy te nie poruszają się względem siebie ruchem jednostajnym. Przy takim opisie trzeba wziąć pod uwagę ciążenie, budując jak gdyby „most”, pozwalający na przejście od jednego u. w. do drugiego. Pole grawitacyjne istnieje dla obserwatora zewnętrznego, a nie istnieje dla obserwatora wewnętrznego. Dla obserwatora zewnętrznego istnieje przyspieszony ruch windy w polu grawitacyjnym, dla wewnętrznego – spoczynek i brak pola grawitacyjnego. Ale „most”, pole grawitacyjne, umożliwiające opis w obu u. w., opiera się na pewnym bardzo ważnym filarze – na równoważności masy grawitacyjnej i masy bez-władnej. Bez tego tropu, nie zauważonego przez mechanikę klasyczną, nasze obecne rozumowanie zupełnie by zawiodło.
       Rozważmy teraz nieco inne wyidealizowane doświadczenie. Przypuśćmy, że istnieje inercjalny u. w., w którym obowiązuje prawo bezwładności. Opisaliśmy już, co się dzieje w windzie, spoczywającej w takim u. w. Ale teraz zmieniamy nasz obraz. Ktoś z zewnątrz przymocował do windy linę i ciągnie ją ze stałą siłą w kierunku wskazanym na rysunku.
Nie jest ważne, jak się to dzieje. Ponieważ w naszym u. w. obowiązują prawa mechaniki, cała winda porusza się ze stałym przyspieszeniem, które ma kierunek ruchu. Posłuchajmy, jak obserwatorzy zewnętrzny i wewnętrzny objaśniają zjawiska zachodzące w windzie.
       O b s e r w a t o r   z e w n ę t r z n y:   Mój u. w. jest układem inercjalnym. Winda porusza się ze stałym przyspieszeniem, gdyż działa na nią stała siła. Obserwatorzy wewnątrz windy pozostają w ruchu bezwzględnym, w ich układzie nie obowiązują prawa mechaniki. Nie stwierdzają oni, by ciała, na które nie działają siły, pozostawały w spoczynku. Jeśli jakieś ciało upuścić, to szybko zderzy się ono z podłogą windy, gdyż podłoga porusza się w górę, jemu naprzeciw. Dotyczy to zarówno chustki, jak zegarka. Obserwator wewnętrzny musi, rzecz dziwna, pozostawać stale na „podłodze”, gdyż skoro tylko podskoczy, podłoga zaraz go dogoni.
       O b s e r w a t o r   w e w n ę t r z n y:   Nie widzę żadnego powodu, aby przypuszczać, że moja winda pozostaje w ruchu bezwzględnym. Przyznaję, że mój u. w., sztywno związany z windą, nie jest właściwie inercjalny, ale nie wierzę, by miało to cokolwiek wspólnego z ruchem bezwzględnym. Zegarek, chustka i wszystkie ciała spadają, gdyż cała winda znajduje się w polu grawitacyjnym. Spostrzegam tu dokładnie taki sam rodzaj ruchu, jaki obserwuje człowiek na Ziemi. Wyjaśnia on ten ruch działaniem pola grawitacyjnego. To samo ma miejsce w moim przypadku.
       Oba opisy, jeden dokonany przez obserwatora zewnętrznego, drugi przez wewnętrznego, są całkowicie konsekwentne i nie ma sposobu rozstrzygnięcia, który z nich jest słuszny. Każdy z nich możemy zastosować do opisu zjawisk zachodzących w windzie: albo ruch niejednostajny i nieobecność pola grawitacyjnego – zgodnie z obserwatorem zewnętrznym, albo spoczynek i obecność pola grawitacyjnego – zgodnie z obserwatorem wewnętrznym.
       Obserwator zewnętrzny może założyć, że winda pozostaje w „bezwzględnym” ruchu niejednostajnym. Ale ruchu, który przestaje istnieć przy założeniu działania pola grawitacyjnego, nie można uważać za ruch bezwzględny.
       Być może istnieje wyjście z dwuznaczności takich dwóch różnych opisów i można dokonać wyboru na rzecz jednego z nich. Wyobraźmy sobie, że przez boczne okienko wpada do windy poziomo promień światła, dobiegając po bardzo krótkim czasie do przeciwległej ściany. Zobaczmy, jak nasi dwaj obserwatorzy przewidzą drogę światła.
       O b s e r w a t o r   z e w n ę t r z n y,   utrzymujący, że winda porusza się ruchem przyspieszonym, rozumowałby tak: Promień światła wpada przez okienko i porusza się poziomo, po linii prostej, ze stałą prędkością w stronę przeciwległej ściany. Ale winda porusza się do góry i w czasie, w którym światło biegnie ku ścianie, winda zmienia swe położenie. Dlatego też promień padnie w punkcie położonym nie dokładnie naprzeciw punktu wejścia promienia, lecz trochę niżej.
Różnica będzie bardzo nieznaczna, niemniej jednak będzie ona istniała i promień poruszać się będzie względem windy nie po prostej, lecz po linii nieco zakrzywionej. Różnica jest związana z drogą, jaką przebyła winda w czasie, gdy promień biegł przez jej wnętrze.
       O b s e r w a t o r   w e w n ę t r z n y,   utrzymujący, że na wszystkie przedmioty w jego windzie działa pole grawitacyjne, powiedziałby: nie ma przyspieszonego ruchu windy, istnieje tylko działanie pola grawitacyjnego. Wiązka światła jest nieważka, toteż nie ulega wpływowi pola grawitacyjnego. Jeśli tylko miała kierunek poziomy, to dojdzie do ściany w punkcie położonym dokładnie naprzeciw punktu wejścia.
       Z powyższej wymiany zdań zdaje się wynikać, że istnieje możliwość rozstrzygnięcia między tymi dwoma przeciwstawnymi punktami widzenia, gdyż zjawisko przebiegałoby dla każdego obserwatora inaczej. Jeśli w żadnym z przytoczonych przed chwilą wyjaśnień nie ma nic nielogicznego, to całe nasze poprzednie rozumowanie upada i nie możemy opisać wszystkich zjawisk na dwa niesprzeczne z sobą sposoby, z polem grawitacyjnym i bez pola.
       Ale na szczęście w rozumowaniu obserwatora wewnętrznego jest poważny błąd, który ratuje nasz poprzedni wniosek. Obserwator ten powiedział: „Wiązka światła jest nieważka, toteż nie ulega wpływowi pola grawitacyjnego”. To przecież nieprawda! Wiązka światła niesie energię, a energia ma masę. Ale każda masa bezwładna jest przyciągana przez pole grawitacyjne, gdyż masa bezwładna jest równoważna masie grawitacyjnej. Wiązka światła zakrzywi się w polu grawitacyjnym zupełnie tak samo, jak zakrzywiłby się tor ciała rzuconego poziomo z prędkością równą prędkości światła. Gdyby obserwator wewnętrzny rozumował poprawnie i brał pod uwagę zakrzywienie się promieni świetlnych w polu grawitacyjnym, jego wyniki byłyby dokładnie takie same, jak obserwatora zewnętrznego.
       Oczywiście pole grawitacyjne Ziemi jest zbyt słabe, aby zakrzywianie się w nim promieni świetlnych można było wykryć bezpośrednim doświadczeniem. lecz słynne doświadczenia wykonane w czasie zaćmień Słońca wykazują w sposób niezbity, choć pośredni, wpływ pola grawitacyjnego na tor promienia świetlnego.
       Z powyższych przykładów wynika, że istnieje uzasadniona nadzieja sformułowania fizyki relatywistycznej. Aby to uczynić, musimy jednak najpierw uporać się z zagadnieniem ciążenia.
       Na przykładzie windy przekonaliśmy się, że oba opisy są konsekwentne. Można zakładać ruch niejednostajny, można go nie zakładać. Potrafimy za pomocą pola grawitacyjnego wyeliminować z naszych przykładów ruch „bezwzględny”. Ale w takim razie w ruchu niejednostajnym nie ma nic bezwzględnego. Pole grawitacyjne jest w stanie całkowicie to wykluczyć.
       Można więc wypędzić z fizyki upiory ruchu bezwzględnego i inercjalnego u. w. i zbudować nową, relatywistyczną fizykę. Nasze wyidealizowane doświadczenia wskazują, jak ściśle wiąże się zagadnienie ogólnej teorii względności z zagadnieniem ciążenia oraz dlaczego tak istotne znaczenie ma dla tego związku równoważność masy grawitacyjnej i bezwładnej. Rozwiązanie zagadnienia ciążenia w ogólnej teorii względności musi się, rzecz jasna, różnić od rozwiązania newtonowskiego. Prawa ciążenia, podobnie jak wszystkie prawa przyrody, muszą być sformułowane dla wszystkich możliwych u. w., podczas gdy prawa mechaniki klasycznej, w postaci nadanej im przez Newtona, obowiązują tylko w układzie inercjalnym.
góra strony
poprzedni fragment następny fragment
Wiw.pl  |  Na bieżąco  |  Informacje  |  Co nowego  |  Matematyka i przyroda  |  Astronomia  |  Biologia  |  Fizyka  |  Matematyka  |  Modelowanie rzeczywistości  |  Humanistyka  |  Filozofia  |  Historia  |  Kultura antyczna  |  Literatura  |  Sztuka  |  Czytaj  |  Biblioteka  |  Delta  |  Wielcy i więksi  |  Przydatne  |  Słowniki  |  Co i gdzie studiować  |  Wszechświat w obrazkach