Fizyka
  Wiw.pl   Na bieżąco:  Informacje   Co nowego   Matematyka i przyroda:  Astronomia   Biologia   Fizyka   Matematyka   Modelowanie rzeczywistości   Humanistyka:  Filozofia   Historia   Kultura antyczna   Literatura   Sztuka   Czytaj:  Biblioteka   Delta   Wielcy i więksi   Przydatne:  Słowniki   Co i gdzie studiować   Wszechświat w obrazkach    
 Jesteś tutaj:  Wirtualny Wszechświat > Fizyka > Wielkie wykłady - Ewolucja fizyki 
  Indeks
Wielkie wykłady
Jak powstawała
Ewolucja fizyki

Triumfy poglądu
mechanistycznego

Upadek poglądu
mechanistycznego

Pole i teoria
względności

Obraz polowy
Dwa filary teorii pola
Rzeczywistość pola
Pole i eter
Rusztowanie mech.
Eter i ruch
Czas, odległość, . . .
Teoria względności
Continuum . . .
Ogólna teoria wzgl.
Wewnątrz i . . .
Geometria i . . .
Potwierdzenie teorii
Pole i materia
Streszczamy
Kwanty
  Źródło
Albert Einstein, Leopold Infeld
EWOLUCJA FIZYKI
Rozwój poglądów od najważniejszych pojęć do teorii względności i kwantów

W przekładzie Ryszarda Gajewskiego


  Ogólna teoria względności i jej potwierdzenie
 
Ogólna teoria względności
i jej potwierdzenie
 
O
gólna teoria względności zmierza do formułowania praw fizycznych dla wszystkich u. w. Podstawowym zagadnieniem teorii jest zagadnienie ciążenia. Po raz pierwszy od czasów Newtona podjęto poważną próbę nowego sformułowania prawa ciążenia. Czy to jest rzeczywiście potrzebne? Zapoznaliśmy się już z osiągnięciami teorii Newtona, z wielkim rozwojem astronomii opartej na jego prawie ciążenia. Prawo Newtona nadal pozostaje podstawą wszystkich obliczeń astronomicznych. Ale spotkaliśmy się też z pewnymi zastrzeżeniami wobec starej teorii. Prawo Newtona obowiązuje tylko w inercjalnym u. w. fizyki klasycznej, w u. w. określonym, jak pamiętamy, przez warunek, że muszą w nim obowiązywać prawa mechaniki. Siła działająca między dwiema masami zależy od ich wzajemnej odległości. Wiemy, że związek między siłą a odległością jest niezmienny względem transformacji klasycznej. Prawo to nie da się jednak pogodzić ze szczególną teorią względności. Odległość nie jest niezmienna względem transformacji Lorentza. Moglibyśmy próbować, jak to z powodzeniem uczyniliśmy z prawami ruchu, uogólniać prawo ciążenia, tak by było ono zgodne ze szczególną teorią względności, czyli – innymi słowy – nadać mu postać niezmienną względem transformacji Lorentza, a nie względem transformacji klasycznej. Ale newtonowskie prawo ciążenia uporczywie opierało się wszelkim próbom uproszczenia i uzgodnienia go ze szczególną teorią względności. Nawet gdyby się to nam udało, konieczny byłby jeszcze dalszy krok: przejście od inercjalnego u. w. szczególnej teorii względności do dowolnego u. w. ogólnej teorii względności. Z drugiej strony, wyidealizowane doświadczenia ze spadającą windą jasno wykazują, że nie ma nadziei na sformułowanie ogólnej teorii względności bez rozwiązania zagadnienia ciążenia. Z naszego wywodu widać, dlaczego rozwiązanie zagadnienia ciążenia w ogólnej teorii względności będzie inne niż w fizyce klasycznej.
       Staraliśmy się wskazać drogę wiodącą do ogólnej teorii względności i przyczyny, które zmuszają nas do ponownej zmiany uprzednich poglądów. Nie wnikając w formalną strukturę teorii, scharakteryzujemy pewne cechy nowej teorii ciążenia w porównaniu ze starą. W świetle tego, cośmy dotąd powiedzieli, uchwycenie istoty tych różnic nie powinno być zbyt trudne.
1. Równania grawitacyjne ogólnej teorii względności można stosować w dowolnym u. w. Wybór – w specjalnym przypadku – jakiegoś szczególnego u. w. jest tylko kwestią wygody. Teoretycznie dopuszczalne są wszystkie u. w. Gdy nie bierzemy pod uwagę ciążenia, powracamy automatycznie do inercjalnego u. w. szczególnej teorii względności.
2. Newtonowskie prawo ciążenia wiąże ruch ciała tu i teraz z działaniem innego ciała w tej samej chwili, na znacznej odległości. Na tym prawie opierał się cały pogląd mechanistyczny. Ale pogląd mechanistyczny upadł. W równaniach Maxwella odkryliśmy nowy model dla praw przyrody. Równania Maxwella są prawami struktury. Wiążą one zdarzenia zachodzące teraz i tu ze zdarzeniami, które zajdą trochę później w bezpośrednim sąsiedztwie. Mówiąc schematycznie, można by powiedzieć: przejście od newtonowskiego prawa ciążenia do ogólnej teorii względności przypomina w pewnym stopniu przejście od teorii płynów elektrycznych z prawem Coulomba do teorii Maxwella.
3. Nasz świat nie jest euklidesowy. Jego charakter geometryczny jest kształtowany przez masy i ich prędkości. Równania grawitacyjne ogólnej teorii względności starają się wykryć własności geometryczne naszego świata.
Przypuśćmy na chwilę, że udało nam się konsekwentnie przeprowadzić program ogólnej teorii względności. Czy jednak w naszych spekulacjach nie grozi nam niebezpieczeństwo zbytniego oddalenia się od rzeczywistości? Wiemy, jak dobrze stara teoria objaśnia obserwacje astronomiczne. Czy istnieje możliwość zbudowania pomostu między nową teorią a obserwacją? Każde rozumowanie musi być sprawdzone doświadczalnie, a wyniki niezgodne z faktami trzeba odrzucić, bez względu na ich atrakcyjność. Jak nowa teoria ciążenia przeszła próbę doświadczenia? Na to pytanie można odpowiedzieć jednym zdaniem: Stara teoria jest szczególnym, granicznym przypadkiem nowej. Stare prawo Newtona okazuje się, w przypadku słabych sił grawitacyjnych, dobrym przybliżeniem nowych praw ciążenia. Wszystkie obserwacje potwierdzają teorię klasyczną, potwierdzają więc zarazem ogólną teorię względności. Z wyższej poziomem nowej teorii uzyskujemy z powrotem starą.
       Nawet gdyby na korzyść nowej teorii nie przemawiały żadne dodatkowe obserwacje, gdyby dawane przez nią wyjaśnienie było tylko równie dobre jak stare, musielibyśmy, mając możność swobodnego wyboru, wypowiedzieć się za nową teorią. Równania nowej teorii są z formalnego punktu widzenia bardziej złożone, ale ich założenia są z punktu widzenia podstawowych zasad o wiele prostsze. Zniknęły dwa straszące upiory – czas bezwzględny i układ inercjalny. Nie przeoczono tropu równoważności masy grawitacyjnej i bezwładnej. Nie potrzeba żadnych założeń co do sił ciążenia i ich zależności od odległości. Równania grawitacyjne mają postać praw struktury, czego od czasu wielkich osiągnięć teorii polowej wymagamy od wszystkich praw fizycznych.
       Z nowych praw ciążenia można wyciągnąć pewne wnioski, których nie zawiera prawo ciążenia Newtona. Jeden z nich – zakrzywianie się promieni świetlnych w polu grawitacyjnym – wymieniliśmy już uprzednio. Teraz wspomnimy o dwóch dalszych konsekwencjach.
       Jeśli stare prawa wynikają z nowych, gdy siły grawitacyjne są słabe, to odstępstw od newtonowskiego prawa ciążenia należy się spodziewać tylko w przypadku stosunkowo dużych sił grawitacyjnych. Weźmy nasz Układ Słoneczny. Planety, wśród nich nasza Ziemia, poruszają się wokół Słońca po torach eliptycznych. Planetą najbliższą Słońca jest Merkury. Przyciąganie między Słońcem a Merkurym jest silniejsze niż przyciąganie między Słońcem a jakąkolwiek inną planetą, gdyż jest tu mniejsza odległość. Jeżeli mamy nadzieję na wykrycie odstępstwa od prawa Newtona, to największe na to widoki istnieją w przypadku Merkurego. Z teorii klasycznej wynika, że tor opisywany przez Merkurego jest podobny do torów innych planet, tylko że bliższy Słońca. Według ogólnej teorii względności ruch powinien być nieco inny. Merkury powinien nie tylko obiegać Słońce, ale opisywana przezeń elipsa powinna jeszcze bardzo powoli obracać się względem u. w. związanego ze Słońcem. Ten obrót stanowi nowy efekt ogólnej teorii względności. Nowa teoria przepowiada wielkość tego efektu. Elipsa Merkurego wykonuje jeden pełny obrót w ciągu trzech milionów lat!
       Odchylenie ruchu Merkurego od toru eliptycznego było znane przed sformułowaniem ogólnej teorii względności, ale nie potrafiono go w żaden sposób wyjaśnić. Z drugiej strony, ogólna teoria względności rozwijała się zupełnie niezależnie od tego szczególnego zagadnienia. Wniosek o obrocie elipsy w ruchu planety dokoła Słońca wyciągnięto z nowych równań grawitacyjnych dopiero później. W przypadku Merkurego teoria z powodzeniem wyjaśniła odstępstwo ruchu od prawa Newtona.
       Istnieje jednak jeszcze jeden wniosek, który wyciągnięto z ogólnej teorii względności i porównano z doświadczeniem. Widzieliśmy już, że zegar umieszczony na dużym okręgu wirującego koła ma inny rytm niż zegar umieszczony na małym okręgu. Podobnie, z teorii względności wynika, że zegar umieszczony na Słońcu miałby inny rytm niż zegar umieszczony na Ziemi, gdyż wpływ pola grawitacyjnego jest na Słońcu znacznie silniejszy niż na Ziemi.
       Wspomnieliśmy wcześniej, że rozżarzony sód wysyła jednorodne światło żółte o określonej długości fali. W tym promieniowaniu ujawnia się jeden z rytmów atomu; atom jest jak gdyby zegarem, a długość wysyłanej fali jest miarą jednego z jego rytmów. Według ogólnej teorii względności długość fali światła, wysyłanego przez atom sodu umieszczony na przykład na Słońcu, powinna być nieznacznie większa od długości fali światła, wysyłanego przez atom sodu na Ziemi.
       Zagadnienie doświadczalnego sprawdzenia konsekwencji ogólnej teorii względności jest złożone i bynajmniej ostatecznie nie rozwiązane. Ponieważ zajmujemy się pojęciami podstawowymi, nie będziemy wnikać głębiej w tę kwestię i ograniczymy się do stwierdzenia, że wyrok doświadczenia zdaje się, jak dotąd, potwierdzać wnioski wyciągnięte z ogólnej teorii względności.
góra strony
poprzedni fragment następny fragment
Wiw.pl  |  Na bieżąco  |  Informacje  |  Co nowego  |  Matematyka i przyroda  |  Astronomia  |  Biologia  |  Fizyka  |  Matematyka  |  Modelowanie rzeczywistości  |  Humanistyka  |  Filozofia  |  Historia  |  Kultura antyczna  |  Literatura  |  Sztuka  |  Czytaj  |  Biblioteka  |  Delta  |  Wielcy i więksi  |  Przydatne  |  Słowniki  |  Co i gdzie studiować  |  Wszechświat w obrazkach